Four New Terpenoids from Xylaria sp. 101

by Yao-Yao Li, Zhi-Yu Hu, Chun-Hua Lu, and Yue-Mao Shen*

Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering; Xiamen Engineering Research Center of Marine Microbial Drug Discovery; Fujian Engineering Laboratory of Pharmaceuticals; School of Life Sciences, Xiamen University, No. 422 South Siming Road, Xiamen 361005, P. R. China (phone: +86-592-2184180; fax: +86-592-2181722; e-mail: yshen@xmu.edu.cn)

One new diterpenoid, xylarenolide (1), and three new sesquiterpenoids, xylaranol A (2), xylaranol B (3), and xylaranic acid (4), were obtained from the fungal strain *Xylaria* sp. 101, which was isolated from the fruiting body of *Xylaria* sp. collected in Gaoligong Mountain, Yunnan Province. Their structures were elucidated by spectroscopic analyses, including 1D- and 2D-NMR experiments, and by HR-Q-TOF mass spectrometry. Their antimicrobial activities were evaluated.

Introduction. – Fungi of the genus *Xylaria* are very diverse with respect to their chemical constituents. Secondary metabolites of them are known to include terpenoids [1-4], cyclopeptides [5][6], polyketides [7][8], cytochalasins [9], xanthones [10][11], and unique unclassified xyloketals [12]. Recently, we have embarked on a research program of looking for new structural and bioactive metabolites from the strain 101, which was collected from Gaoligong Mountain of southwestern China, and identified as *Xylaria* sp. (family Xylariaceace). Here, we report the isolation, structure elucidation, and antimicrobial activities of four new terpenoids, namely xylarenolide (1), xylaranol A (2), xylaranol B (3), and xylaranic acid (4), from the fermentation products of the fungal strain *Xylaria* sp. 101.

Results and Discussion. – 1. *Structure Elucidation.* The morphological properties of the isolate 101 were examined after incubation for two months at 28° in potato–dextrose agar (PDA) medium. This organism was identified to be *Xylaria* sp. according to its ITS sequence of rDNA (ITS1-5.8S-ITS2). The fermentation culture was extracted successively with AcOEt. The AcOEt extract was purified by repeated column chromatography (*RP-18, Sephadex LH-20*, and silica gel) to afford compounds **1**–**4**.

¹⁾ Arbitrary atom numbering. For systematic names, see Exper. Part.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

Xylarenolide (1) was obtained as a colorless oil. The HR-Q-TOF-MS showed the *quasi*-molecular-ion peak ($[M + Na]^+$) at m/z 371.2049, establishing the molecular formula $C_{20}H_{28}O_5$. The IR absorption at 3366 cm⁻¹ indicated the presence of OH groups. The ¹³C-NMR (DEPT) spectra of **1** (*Table 1*) displayed signals for seven quaternary C-atoms (one O-bearing, one olefinic, and two CO), and three CH (one Obearing and one olefinic), seven CH₂, and three Me groups. The structure of fragment **1a**, a C_{13} moiety composed of $2 \times Me$, $3 \times CH_2$, $3 \times CH$ groups, and five quaternary Catoms, was determined on the basis of the ${}^{1}H$, ${}^{1}H$ -COSY correlations $H-C(1) \leftrightarrow$ $H-C(2) \leftrightarrow H-C(3)$ and $H-C(5) \leftrightarrow H-C(6) \leftrightarrow H-C(7)$, along with the HMBCs from the H-atoms of Me(18) to C(3), C(4), C(5), and C(19), from those of Me(20) to C(1), C(5), C(9), and C(10), from H-C(6) to C(8), and from H-C(7) to C(9) (Fig. 1). Furthermore, the HMBC spectra showed correlations of the H-atoms of Me(17) with C(12), C(13), C(14), and C(15), and correlations from $CH_2(15)$ to C(16) were observed. In combination with the ¹H, ¹H-COSY H-C(11) \leftrightarrow H-C(12), this led to the establishment of fragment **1b** (*Fig. 1*). Finally, the HMBCs from $CH_2(12)$ to C(9)and from $CH_2(14)$ to C(7) indicated that fragments **1a** and **1b** were linked together via C(9)-C(11) and C(8)-C(14), indicating a pimarane-type diterpene. The relative configuration of **1** was determined by the analysis of NOE spectrum. The presence of NOE correlations $H-C(18) \leftrightarrow H-C(5) \leftrightarrow H-C(6)$, and $H_{eq}-C(14) \leftrightarrow Me(17) \leftrightarrow$ $H_{ax}-C(11) \leftrightarrow Me(20)$ (Fig. 2) indicated that 1 had the same relative configuration as that of hymatoxin E [13]. Indeed, $\mathbf{1}$ was the C(16) carboxylic derivative of hymatoxin E. Thus, from the above data, the structure of compound 1 was established to be 2-[(3aR*,5aS*,8R*,10aS*,10bR*,10cS*)-2,3,3a,4,5a,7,8,9,10,10a,10b,10c-dodecahydro-10ahydroxy-3a,8,10b-trimethyl-4-oxo-1H-phenanthro[10,1-bc]furan-8-yl]acetic acid.

) 0(11)	$\delta(C)$	Position ¹)	$\delta(\mathrm{H})$	$\delta(C)$
$1.62 - 1.64 (m, H_{ax}),$	27.3 (t)	11	1.91 (dt , $J = 4.2$, 14.0, H_{ax}),	27.0 (<i>t</i>)
$1.29 - 1.34 (m, H_{eq})$			$1.52 - 1.54 (m, H_{eq})$	
$1.77 - 1.79 (m, H_{ax}),$	18.1(t)	12	1.81 (dt , $J = 4.2$, 14.0, H_{ax}),	31.9 (<i>t</i>)
$1.53 - 1.55 (m, H_{eq})$			$1.52 - 1.54 (m, H_{eq})$	
1.47 (ddd , $J = 5.8$, 8.5, 14.3, H_{ax}),	28.3 (t)	13		34.0 (s)
$2.19 - 2.22 (m, H_{eq})$		14	2.46 $(d, J = 11.0, H_{ax}),$	43.2 (<i>t</i>)
	42.4(s)		$2.18 - 2.20 (m, H_{eq})$	
2.36 $(d, J = 4.6, H_{ax})$	43.9 (d)	15	2.31 (s)	48.1 (<i>t</i>)
4.81 (br. $d, J = 2.5, H_{eq}$)	73.1 (d)	16		176.2 (s)
5.82 (br. s)	120.7(d)	17	0.90(s)	21.8(q)
	143.9 (s)	18	1.32(s)	24.8(q)
	72.9(s)	19		182.7 (s)
	37.9 (s)	20	1.00 (s)	21.9(q)
	1.62 - 1.64 (m, H_{ax}) , 1.29 - 1.34 (m, H_{eq}) 1.77 - 1.79 (m, H_{ax}) , 1.53 - 1.55 (m, H_{eq}) 1.47 $(ddd, J = 5.8, 8.5, 14.3, H_{ax})$, 2.19 - 2.22 (m, H_{eq}) 2.36 $(d, J = 4.6, H_{ax})$ 4.81 (br. $d, J = 2.5, H_{eq})$ 5.82 (br. s)	$\begin{array}{c} 1.62 - 1.64 \ (m, H_{ax}), & 27.3 \ (t) \\ 1.29 - 1.34 \ (m, H_{eq}) & \\ 1.77 - 1.79 \ (m, H_{ax}), & 18.1 \ (t) \\ 1.53 - 1.55 \ (m, H_{eq}) & \\ 1.47 \ (ddd, J = 5.8, 8.5, 14.3, H_{ax}), & 28.3 \ (t) \\ 2.19 - 2.22 \ (m, H_{eq}) & \\ & \\ 2.36 \ (d, J = 4.6, H_{ax}) & 43.9 \ (d) \\ 4.81 \ (br. \ d, J = 2.5, H_{eq}) & 73.1 \ (d) \\ 5.82 \ (br. \ s) & \\ 120.7 \ (d) \\ 143.9 \ (s) \\ 72.9 \ (s) \\ 37.9 \ (s) \end{array}$	$\begin{array}{c} 1.62 - 1.64 \ (m, H_{ax}), & 27.3 \ (t) & 11 \\ 1.29 - 1.34 \ (m, H_{eq}) & & \\ 1.77 - 1.79 \ (m, H_{ax}), & 18.1 \ (t) & 12 \\ 1.53 - 1.55 \ (m, H_{eq}) & & \\ 1.47 \ (ddd, J = 5.8, 8.5, 14.3, H_{ax}), & 28.3 \ (t) & 13 \\ 2.19 - 2.22 \ (m, H_{eq}) & & 14 \\ & & 42.4 \ (s) \\ 2.36 \ (d, J = 4.6, H_{ax}) & & 43.9 \ (d) \ 15 \\ 4.81 \ (br. \ d, J = 2.5, H_{eq}) & & 73.1 \ (d) \ 16 \\ 5.82 \ (br. \ s) & & 120.7 \ (d) \ 17 \\ 143.9 \ (s) \ 18 \\ 72.9 \ (s) \ 19 \\ 37.9 \ (s) \ 20 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1. ¹*H*- and ¹³*C*-*NMR* Data of **1**. At 600 and 150 MHz, resp., in CDCl₃; δ in ppm. J in Hz.

Xylaranol A (2) was obtained as a colorless oil. The molecular formula was determined as $C_{15}H_{26}O_2$ by its HR-Q-TOF-MS and NMR data. The IR spectrum exhibited the absorption at 3424 cm⁻¹ typical for OH groups. The ¹H- and ¹³C-NMR, and DEPT spectra (*Table 2*) indicated two Me, seven CH₂, four CH groups, and two

Fig. 1. The structures of fragments **1a** and **1b** of compound **1**, fragments **2a** and **2b** of compound **2**, and fragments **4a** and **4b** of compound **4**, and selected HMBCs $(H \rightarrow C)$ and ${}^{1}H,{}^{1}H$ -COSY correlations (bold line)

Fig. 2. Selected NOE correlations for compounds 1, 2, and 4 $(H \leftrightarrow H)$

quaternary C-atoms, of which a CH₂ group and a quaternary C-atom were O-bearing. Furthermore, the HSQC, HMBC, and ¹H,¹H-COSY spectra facilitated the assignments of all ¹H- and ¹³C-NMR signals, indicating a simple guaiane-type structure [14]. The HMBCs from Me(14) to C(1), C(9), and C(10), and from Me(15) to C(3), C(4) and C(5), along with the ¹H,¹H-COSY correlations $H-C(3) \leftrightarrow H-C(2) \leftrightarrow H-C(1) \leftrightarrow$ H-C(5) established the structure of fragment **2a** (*Fig. 1*). Meanwhile, the HMBCs from $CH_2(13)$ to C(7), C(11), and C(12), in combination with the ¹H,¹H-COSY correlations $H-C(6) \leftrightarrow H-C(7) \leftrightarrow H-C(8)$, led to the establishment of fragment **2b** (*Fig. 1*). Finally, the ¹H,¹H-COSY correlations $H-C(5) \leftrightarrow CH_2(6)$ and $CH_2(8) \leftrightarrow$ $CH_2(9)$ connected the fragments 2a and 2b. The relative configuration of 2 was assigned on the basis of NOE spectrum (Fig. 2). Although the NOE correlations between H-C(1) and H-C(5) were not observed, as reported by *Fleischer et al.* [14], the fusion of ring A and ring B was determined to be *cis* based on the NOE correlations $H-C(1) \leftrightarrow Me(14), Me(14) \leftrightarrow H_a-C(3) \leftrightarrow H-C(5), and H_b-C(3) \leftrightarrow Me(15)$ which determined the relative configurations at C(10) and C(4). The relative configuration of H-C(7) was determined to be β according to the NOE correlations H_a-C(6) \leftrightarrow

Me(15) and $H_a - C(6) \leftrightarrow CH_2(12)$. Therefore, the structure of compound **2** was established to be $(1R^*, 3aS^*, 4R^*, 7S^*, 8aR^*)$ -decahydro-7-(1-hydroxyprop-2-en-2-yl)-1,4-dimethylazulen-4-ol.

Position ¹)	2		3	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(H)$	$\delta(C)$
1	2.09–2.16 (<i>m</i>)	55.3 (d)	1.99 (dd, J = 8.7, 18.1)	54.8 (d)
2	$1.54 - 1.57 (m, H_a),$	26.2 (t)	1.46 (ddd , $J = 4.9$, 10.6, 22.6, H_a),	25.6 (t)
	$1.72 - 1.75 (m, H_{\beta})$		$1.52 - 1.58 (m, H_{\beta})$	
3	$1.72 - 1.74 (m, H_a),$	31.1 (t)	$1.63 - 1.65 (m, H_{\alpha}),$	30.6 (<i>t</i>)
	$1.22 - 1.25 (m, H_{\beta})$		$1.12 - 1.19 (m, H_{\beta})$	
4	2.03 - 2.05(m)	38.9(d)	1.89 - 1.99(m)	38.6(d)
5	2.02 - 2.04 (m)	45.9(d)	$1.79 - 1.82 \ (m)$	46.1 (d)
6	$1.45 - 1.50 (m, H_a),$	29.2(t)	$0.82 (dd, J = 12.7, 23.1, H_a),$	21.3(t)
	$1.91 - 1.94 (m, H_{\beta})$		1.65 (br. $d, J = 10.0$)	
7	2.32 (td, J = 8.5, 3.5)	41.8(d)	1.73 - 1.76 (m)	43.0(d)
8	$1.28 - 1.31 (m, H_a),$	29.4(t)	$1.05 - 1.08 (m, H_a),$	23.9(t)
	$1.48 - 1.52 (m, H_{\beta})$		$1.74 - 1.77 \ (m, H_{\beta})$	
9	$1.94 - 1.96 (m, H_a),$	36.2 (t)	$1.73 - 1.75 (m, H_a),$	33.8 (<i>t</i>)
	$1.58 - 1.61 \ (m, H_{\beta})$		$1.30 - 1.33 (m, H_{\beta})$	
10		75.0(s)		72.4(s)
11		156.3 (s)		74.5 (s)
12	4.13 (s)	65.0(t)	3.21(s)	67.8(t)
13	$4.88(s, H_a),$	106.9(t)	0.87(s)	19.4(q)
	$4.97 (s, H_{b})$			
14	1.21 (s)	29.7(q)	1.01 (s)	30.9(q)
15	0.89(d, J = 5.5)	16.1(q)	0.89 (d, J = 7.0)	16.3(q)

Table 2. ¹*H*- and ¹³*C*-*NMR* Data of **2** (CDCl₃) and **3** ((D₆)DMSO). At 600/150 MHz, in CDCl₃; δ in ppm. *J* in Hz.

Xylaranol B (**3**) showed a *quasi*-molecular-ion peak $([M + H]^+)$ at m/z 257.2969 in the positive-ion-mode HR-Q-TOF-MS, which was consistent with the molecular formula C₁₅H₂₈O₃. The IR spectrum exhibited the absorption at 3427 cm⁻¹ for OH groups. The ¹H- and ¹³C-NMR data of **3** (*Table 2*) were similar to those of **2**. The difference was at δ (C) 74.5 (C(11)) and 19.4 (C(13)) due to the hydration of the C(11)=C(13) bond, which was supported by the HMBCs from Me(13) to C(7), C(11), and C(12). The relative configuration of **3** was determined on the basis of the same NOE correlations as those of **2**. Therefore, compound **3** was determined to be 2-[(3*R**,3a*R**,5*S**,8*R**,8a*S**)-decahydro-8-hydroxy-3,8-dimethylazulen-5-yl]propane-1,2diol.

Xylaranic acid (4) was deduced to have the molecular formula $C_{15}H_{24}O_5$ from the HR-Q-TOF-MS and NMR spectral data. The IR absorption at 3404 cm⁻¹ indicated the presence of OH groups. The ¹H- and ¹³C-NMR, and DEPT spectra (*Table 3*) exhibited 15 signals, which were assigned to two Me, four CH₂ (one O-bearing), six CH (one olefinic and two O-bearing) groups, and three quaternary C-atoms (one olefinic and one CO). Comparison of ¹H- and ¹³C-NMR data of 4 (*Table 3*) with those of phomenone in literature [15] revealed that 4 had the same ring C-atom skeleton as a

simple eremophilane-type sesquiterpene. The HMBCs from Me(14) to C(4), C(5), C(6), and C(10), and from CH₂(1) to C(10), in combination with the ¹H,¹H-COSY correlations CH₂(1) \leftrightarrow H–C(2) \leftrightarrow CH₂(3) \leftrightarrow H–C(4) \leftrightarrow Me(15), established the structure of fragment **4a** (*Fig.* 1). Additionally, the HMBC spectrum showed that CH₂(13) were correlated with C(12), and the correlations H–C(9) \leftrightarrow H–C(8) \leftrightarrow H–C(7) \leftrightarrow H–C(11) \leftrightarrow CH₂(13) were observed in ¹H,¹H-COSY spectrum, determining the structure of fragment **4b** (*Fig.* 1). Finally, the HMBCs from CH₂(1) to C(9), and from CH₂(6) to both C(7) and C(11), assigned the fragments **4a** and **4b** to be linked together *via* C(9) and C(10), and C(6) and C(7). The relative configuration of **4** was determined from the NOE spectrum. The presence of NOE correlations H_{\beta}-C(1) \leftrightarrow H–C(2) \leftrightarrow Me(14) \leftrightarrow Me(15) as well as H–C(7) \leftrightarrow H–C(8) indicated that H–C(2), Me(14), and Me(15) were β -oriented, while H–C(7) and H–C(8) were in α -orientation (*Fig.* 2). Thus, the structure of compound **4** was established to be 2-[(2*R**,3*S**,6*S**,8*S**,8*aR**)-1,2,3,5,6,7,8,8a-octahydro-3,6-dihydroxy-8,8a-dimethylnaph-thalen-2-yl]-3-hydroxypropanoic acid.

Table 3. ¹H- and ¹³C-NMR Data of 4. At 600/150 MHz, in CDCl₃; δ in ppm. J in Hz.

Position ¹)	$\delta(\mathrm{H})$	$\delta(C)$	Position ¹)	$\delta(\mathrm{H})$	$\delta(C)$
1	2.41 (br. $d, J = 11.5, H_{\beta}$),	41.9 (<i>t</i>)	7	2.66 - 2.69(m)	34.3 (d)
	$2.28 (t, J = 11.5, H_a)$		8	4.93 (dd, J = 2.0, 7.0)	76.0(d)
2	3.59 - 3.62 (m)	71.0(d)	9	5.52 (br. $d, J = 2.0$)	118.0(d)
3	$1.41 - 1.45 (m, H_a),$	39.7 (t)	10		148.1(s)
	$1.82 - 1.84 (m, H_{\beta})$		11	2.73 - 2.76(m)	47.0(d)
4	1.37 - 1.40 (m)	40.6(d)	12		178.1(s)
5		35.9 (s)	13	4.03 (dd, J = 5.5, 11.3), 3.86 (dd, J = 5.5, 11.3)	60.5 <i>(t)</i>
6	1.83 (dd , $J = 6.1$, 14.8, H_{β}), 1.71 (dd , $J = 4.9$, 14.8, H_{a})	35.5 (<i>t</i>)	14 15	1.08 (s) 0.91 (d, $J = 6.6$)	20.1 (q) 14.9 (q)

2. Biological Study. The antibacterial activities of compounds 1-4 were tested against bacteria (*Escherichia coli* (CMCC (B) 44103), *Bacillus subtilis* (CMCC (B) 63501), *Bacillus pumilus* (CMCC (B) 63202), and *Staphylococcus aureus* (CMCC (B) 26003)), and yeast (*Candida albicans* (AS 2.538)) using *Oxford* plate assay system. Two replicates were performed for each compound at a concentration 0.3 mg/ml with the loading volume 100 µl. The results showed that compounds 1-4 had no effects on the growth of tested bacteria or yeast at 30 µg/plate.

This work was financially supported by the *National Science Fund for Distinguished Young Scholars* to *Y.-M. Shen* (No. 30325044) and the *Key Grant of Chinese Ministry of Education* (No. 306010).

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh; Qingdao Marine Chemical Factory, Qingdao, P. R. China), silica gel GF_{254} (Merck), RP-18 (Merck), and Sephadex LH-20 (Amersham Biosciences). TLC: precoated silica-gel GF_{254} plates (0.20–0.25 mm; Qingdao Marine Chemical Factory, Qingdao, P. R. China). Optical rotations: Perkin-Elmer 341 polarimeter, with CHCl₃ as solvent. IR Spectra: in KBr on a Nicolet FT-IR 360 spectrophotometer. ¹H- and ¹³C-NMR spectra:

Bruker DRX-600 spectrometer, at 600 and 150 MHz, resp., in CDCl₃ or (D₆)DMSO; δ in ppm rel. to Me₄Si, J in Hz.

Isolation and Fermentation of the Fungal Strain. The fungus was isolated from the fruiting body of *Xylaria* sp., which was collected in 'Gaoligong Mountain National Natural conservation Area', Yunnan Province, P. R. China. Both a traditional morphological assessment and internal transcribed spaces (ITS) sequencing were performed to characterize it as *Xylaria* sp. 101. The fermentation was performed, and the mycelia of 101 grown on PDA plates were used to inoculate 1-1 *Erlenmeyer* flasks containing 200 ml of PD medium (potato 200 g/l, glucose 20 g/l, pH-neutral). The flasks were incubated on a rotary shaker for 5 d at 28° with shaking at 160 rpm. The cultures were transferred into 4 20-1 flasks containing PD medium (51) and cultivated for two months at 28° without agitation.

Extraction and Isolation. The culture filtrate was concentrated under vacuum at 45° to a volumn of 2 l and then extracted with AcOEt (3 ×). The combined org. layer, upon solvent removal, yielded a crude extract as a brown syrup (4.8 g). The extract was subjected to MPLC (145 g of *RP-18*; 30, 50, 70%, aq. acetone, and neat acetone; 2 l for each gradient) to yield 14 fractions: *Frs. a-m.*

Fr. b (828 mg) was subjected to *Sephadex LH-20* (in MeOH) twice, followed by CC (1. CHCl₃/MeOH 100:1; 2. MPLC (30 g *RP-18*, Me₂CO/H₂O 3:7)) to afford **4** (4 mg). *Fr. d* (300 mg) was subjected to *Sephadex LH-20* (in MeOH) to afford *Fr. d.1* (166 mg), which was then combined with *Fr.e.1* (44 mg) and purified by passage over *Sephadex LH-20* (in MeOH) again, and followed by purification on MPLC (30 g *RP-18*; Me₂CO/H₂O 3:7) to afford **3** (26 mg). *Fr. e* (214 mg) was subjected to *Sephadex LH-20* (in MeOH) to afford **3** (26 mg). *Fr. e* (214 mg) was purified by repeated CC (1. CHCl₃/MeOH 10:1; 2. Petroleum ether (PE)/acetone 15:1) to afford **1** (6 mg). *Fr. g* (406 mg) was subjected to CC (1. Sephadex LH-20: MeOH; 2. PE/Me₂O 15:1; 3. MPLC: 30 g *RP-18*; 35% aq. acetone) to afford **2** (4 mg).

 $\begin{aligned} &Xy larenolide \ (=(6\beta,13\alpha)-9-Hydroxy-18-oxo-6,18-epoxypimar-7-en-16-oic \ Acid = 2-[(3aR,5aS*, 8R*,10aS*,10bR*,10cS*)-2,3,3a,4,5a,7,8,9,10,10a,10b,10c-Dodecahydro-10a-hydroxy-3a,8,10b-trimethyl-4-oxo-1H-phenanthro[10,1-bc]furan-8-yl]acetic \ Acid; \mathbf{1}). \ Colorless \ oil. \ [a]_D^{20} = -18.0 \ (c = 0.054, CHCl_3). \\ IR \ (KBr): 3366, 2917. \ ^1H- \ and \ ^{13}C-NMR: \ Table \ 1. \ HR-Q-TOF-MS: \ 371.2049 \ ([M+Na]^+, \ C_{20}H_{28}NaO_5^+; calc. \ 371.1834). \end{aligned}$

Xylaranol A (=($1R^{,3}aS^{,4}R^{,7}S^{,8}aR^{,2}$)-*Decahydro-7-(3-hydroxyprop-1-en-2-yl)-1,4-dimethylazulen-4-ol*; **2**). Colorless oil. [a]₂₀²⁰ = -24.2 (c = 0.08, CHCl₃). IR (KBr): 3424, 2928. ¹H- and ¹³C-NMR: *Table 2*. ESI-MS (pos.): 238 ([M + Na]⁺). HR-Q-TOF-MS: 261.1928 ([M + Na]⁺, C₁₅H₂₆NaO₂⁺; calc. 261.1825).

Xylaranol B (=2-[(3R*,3aR*,5S*,8R*,8aS*)-Decahydro-8-hydroxy-3,8-dimethylazulen-5-yl]propane-1,2-diol; **3**). Colorless power. $[a]_{20}^{20} = -3.6$ (c = 0.018, CHCl₃). IR (KBr): 3427. ¹H- and ¹³C-NMR: *Table 2*. HR-Q-TOF-MS: 257.2969 ($[M + H]^+$, C₁₅H₂₉O₃⁺; calc. 257.2117).

Xylaranic Acid (=2-[(2R*,3S*,6S*,8S*,8aR*)-1,2,3,5,6,7,8,8a-Octahydro-3,6-dihydroxy-8,8a-dimethylnaphthalen-2-yl]-3-hydroxypropanoic Acid; **4**). Colorless oil. $[a]_{D}^{20}$ = +23.4 (c = 0.096, CHCl₃). IR (KBr): 3404, 2927, 1751. ¹H- and ¹³C-NMR: *Table 3*. HR-Q-TOF-MS: 285.3016 ($[M + H]^+$, C₁₅H₂₅O₅⁺; calc. 285.1702).

REFERENCES

- [1] C. J. Smith, N. R. Morin, G. F. Bills, A. W. Dombrowski, G. M. Salituro, S. K. Smith, A. Zhao, D. J. MacNeil, J. Org. Chem. 2002, 67, 5001.
- [2] S. J. Coval, M. S. Puar, D. W. Phife, J. S. Terracciano, M. Patel, J. Antibiot. 1995, 48, 1171.
- [3] S. T. Deyrup, J. B. Gloer, K. O'Donnell, D. T. Wicklow, J. Nat. Prod. 2007, 70, 378.
- [4] Z.-Y. Hu, Y.-Y. Li, Y.-J. Huang, W.-J. Su, Y.-M. Shen, Helv. Chim. Acta 2008, 91, 46.
- [5] Y. Lin, X. Wu, S. Feng, G. Jiang, S. Zhou, L. L. P. Vrijmoed, E. B. G. Jones, *Tetrahedron Lett.* 2001, 42, 449.
- [6] H. Huang, Z. She, Y. Lin, L. L. P. Vrijmoed, W. Lin, J. Nat. Prod. 2007, 70, 1696.
- [7] S. Boonphong, P. Kittakoop, M. Isaka, D. Pittayakhajonwut, M. Tanticharoen, Y. Thebtaranonth, J. Nat. Prod. 2001, 64, 965.

- [8] D. O'Hagana, S. V. Rogers, G. R. Duffin, R. L. Edwards, Tetrahedron Lett. 1992, 33, 5585.
- [9] H. Jayasuriya, K. B. Herath, J. G. Ondeyka, J. D. Polishook, G. F. Bills, A. W. Dombrowski, M. S. Springer, S. Siciliano, L. Malkowitz, M. Sanchez, Z. Guan, S. Tiwari, D. W. Stevenson, R. P. Borris, S. B. Singh, J. Nat. Prod. 2004, 67, 1036.
- [10] R. A. Davis, G. K. Pierens, Magn. Reson. Chem. 2006, 44, 966.
- [11] P. C. Healy, A. Hocking, N. Tran-Dinh, J. I. Pitt, R. G. Shivas, J. K. Mitchell, M. Kotiw, R. A. Davis, *Phytochemistry* 2004, 65, 2373.
- [12] Y. Lin, X. Wu, S. Feng, G. Jiang, J. Luo, S. Zhou, L. L. P. Vrijmoed, E. B. G. Jones, K. Krohn, K. Steingröver, F. Zsila, J. Org. Chem. 2001, 66, 6252.
- [13] K. Borgschulte, S. Rebuffat, W. Trowitzsch-Kienast, D. Schomburg, J. Pinon, B. Bodo, *Tetrahedron* 1991, 47, 8351.
- [14] T. C. Fleischer, R. D. Waigh, P. G. Waterman, J. Nat. Prod. 1997, 60, 1054.
- [15] C. Riche, C. Pascard-Billy, M. Devys, A. Gaudemer, M. Barbier, J.-F. Bousquet, *Tetrahedron Lett.* 1974, 15, 2765.

Received August 11, 2009